文件编号: Q/WU FLHA19090025R014 版本号: V2.0 受控状态: 分发号:

物质科学公共实验平台

质量管理文件

多晶 X 射线衍射仪 标准操作规程

2021年11月23日发布

年 月 日

实施

物质科学公共实验平台 发布

With the second s

修订页

修订日期	版本号	修订说明	修订	审核	批准
2019. 11. 08	V1.0	发布试行	缪晓和	卢星宇 盛沛	周桃飞
2021 11 23	V2 0	发布试行	缪晓和		
2021.11.23	V2. 0		钟影		
					7.
					\bigcirc
			1.		
			>>		
		117			
		- TA			
EXT.					

With the second s

1.	目的.		1
2.	范围.		1
3.	职责.		1
4.	X 射线	衍射实验室安全管理规范	1
5.	多晶义	(射线衍射设备管理规范	2
	5.1.	多晶 X 射线衍射仪 Bruker D8 Advance 使用制度	2
	5. 2.	预约制度	2
	5.3.	培训考核制度	3
	5.4.	仪器故障报告	4
	5.5.	致谢	4
6.	多晶义	(射线衍射仪 Bruker D8 Advance 标准操作步骤	6
	6. 1.	介绍	6
	6. 2.	仪器主要技术参数	6
	6. 3.	样品要求	8
	6. 4.	样品制备	8
	6. 5.	开机	10
	6. 6.	衍射仪准直步骤	12
	6. 7.	单个样品模式测量	13
	6. 8.	批量样品模式测量	16
	6. 9.	数据格式转换	20
7.	常见胡	牧障处理	21
8.	更多资	予料	22
Ň	8. 1.	EVA 物相分析及衍射数据处理	22
	8. 2.	X 射线单晶衍射仪 - 光源的选择	22
	8. 3.	多晶 X 射线衍射 - 走近探测器	22
	8.4.	多晶 X 射线衍射的样品制备	23
	8.5.	X 射线衍射仪的光学系统及其应用	23
	8. 6.	多晶 XRD 数据收集知多少	24
	8. 7.	Rietveld 结构精修基本介绍	24
9.	相关/	支撑性文件	25
10.	记录		25

With the second s

1. 目的

建立多晶 X 射线衍射仪 Bruker D8 Advance 标准使用操作规程,使其被正确、规范地使用。

2. 范围

本规程适用于所有使用多晶 X 射线衍射仪 Bruker D8 Advance 的用户。

3. 职责

- 3.1. 用户: 严格按本程序操作,发现异常情况及时汇报实验室技术员。
- 3.2. 实验室技术员:确保操作人员经过相关培训,通过考核,并按本规程进行操作。

4. X 射线衍射实验室安全管理规范

- 4.1. 进入实验室的所有师生应熟悉消防安全基本知识、化学危险品安全知识、用电/用 水/用气常识。
- 4.2. 严格遵守 X 射线衍射实验室的各项安全管理规范,注意警示标识。
- 4.3. 实验室仪器需经培训考核后方可操作,并严格遵守仪器常规操作流程进行实验,未 经考核者严禁使用;严禁未经允许进行非 SOP 中规定的其他操作,或擅自修改仪器、 使用非指定部件,或在拆下安全装置的情况下操作仪器。
- 4.4. 严禁在多晶 X 射线衍射仪操控电脑主机上使用 USB 拷贝数据,严禁私自接入网络。
- 4.5. 用户上机实验必须严格按照操作规程进行,实验室技术员应经常巡视,及时纠正违规操作,消除安全隐患;实验做完后整理好实验相关区域并做好实验记录。
- 4.6. 样品制备、装送样品时必须戴手套,禁止直接用手触摸样品台及样品架。为防止交 叉污染,严禁戴手套操作鼠标、键盘,同时严禁戴手套开关门。
- 4.7. 保持实验工作区域整洁,相关工具放置在指定位置;严禁摆放与实验无关的个人物品,严禁在实验室饮食与抽烟。
- 4.8. 严格遵守学校规章制度,有毒废物、试剂、器皿、利器等分类回收。
- 4.9. 实验室人员离开前必须认真检查实验室的电是否关闭,离开时随手关门。
- 4.10. 仪器操作过程中出现设备故障、异响、异味、冒烟等异常现象时,请第一时间联 系实验室技术员,不得擅自修理设备。
- 4.11. 夜间 22:00-次日 8:00 测试,必须两人结伴操作;因违规操作或其他失误造成 安全事故,相关责任人将受到通报批评及相应处罚。

5. 多晶 X 射线衍射设备管理规范

5.1. 多晶 X 射线衍射仪 Bruker D8 Advance 使用制度

该仪器遵从学校"科研设施与公共仪器中心"对大型仪器设备实行的管理办法和 "集中投入、统一管理、开放公用、资源共享"的建设原则,面向校内所有教学、科研 单位开放使用,根据使用机时适当收取费用;并在保障校内使用的同时,面向社会开放。

多晶 X 射线衍射仪 Bruker D8 Advance (以下简称 PXRD)使用方案分为五类:

(1) 培训测试:用户提出培训申请,技术员安排培训。培训时需用户准备样品并制 样,培训内容包括:实验室规章制度说明,PXRD 基本原理、硬件构造及各部分功能;常 规样品制样、仪器的标准操作流程、控制软件(Diffrac. Management, EVA)操作,数据 处理及测试注意事项。该过程中用户在技术员指导下进行仪器操作并进行数据处理。

(2) 自主测试-初级:用户独立制样、装样;独立操作 PXRD 进行常规数据采集(广 角衍射),并进行数据处理及上传。

(3) 自主测试-中级:用户独立制样、装样;独立操作 PXRD 进行复杂数据采集(低角衍射与分区采集数据),并进行数据处理及上传。

(4) 自主测试-高级:用户独立制样、装样;独立操作 PXRD 进行常规及复杂数据采集(结构精修数据),并进行数据处理及上传。

(5)送样测试:用户预约时提供样品信息及测试要求;用户负责制样,技术员操作 仪器并做基本数据处理;

该仪器的使用实行预约制度,请使用者根据样品的测试要求在学校"大型仪器共享 管理系统"(以下简称大仪共享)进行预约,并按照要求登记预约信息。

5.2. 预约制度

为充分利用仪器效能、服务全校科研工作,根据测试内容与时间的不同,X射线衍 射实验室制定了 7*24 小时预约制度。根据预约制度可登陆大仪共享网站最少提前2小 时预约机时,包括周末;寒暑假及国庆、春节假期至少提前2天预约机时。

请严格遵守预约时间使用仪器,以免浪费机时。如需调换时间段,在技术员同意下 可与其他使用者协商。因故不能在预约时间内测试者,请提前2小时取消预约并通知技 术员。如无故不遵预约时间,将被取消一个月的预约资格。

预约	时段	预约时间/每人	测试内容	
工作时间	09:00 至	每人次可预约扣时>10 min	白子测过 送样测过	
(周一至周五)	17:30	每八八可顶约机时≥10 mm	目土测试,送样测试	
非工作时间	18:30 至次日	每人次可预约扣时>10 min	白子测计	
(周一至周五)	8:00	每八八可顶约机时≥10 mm	日王列以	
非工作时间	00.00 五			
(周末及节假	₩□ 8.00	每人次可预约机时≥10 min	自主测试	
日)	(人口 8:00			

(1) 校内使用者须经过技术员的实验操作培训,考核合格后方可上机使用;

(2) 实验开始时务必在实验记录本上登记,结束时如实记录仪器状态;

(3) 用户必须在登录状态下才可以接触平台仪器,否则,视为违规,平台将采取双 倍使用机时进行计费的措施进行处罚;

(4) 严禁擅自处理、拆卸、调整仪器主要部件。使用期间如仪器出现故障,使用者 须及时通知技术员,以便尽快维修或报修,隐瞒不报者将被追究责任,加重处理;

(5) 因人为原因造成仪器故障(如硬件损坏),其导师课题组须承担维修费用;

(6) 不可擅自做除培训操作之外的测试,如有需求请务必联系技术员;

(7) PXRD 数据不允许在仪器电脑中删改,尤其不允许用 U 盘与移动硬盘直接拷贝。 测 试 数 据 保 存 至 以 当 前 **学 工 号** 结 尾 的 用 户 个 人 文 件 夹 , 如 D:\USER DATA\xxxLab\xxxx-202100xxx(**自建文件夹无效!!!** 若无用户个人目录的,请打开仪器 电脑桌面的 storage-signin 快捷方式,输入用户的统一身份认证信息,即可注册)。用 户登录西湖大学共享存储平台,地址为 http://172.16.75.31:7000(校园网或校园 wifi) 或 http://172.18.21.192:7000(实验资源网)或学校统一身份认证门户主页, 账号密码同统一身份认证系统,下载原始数据至本地电脑,以保存并做数据处理;建议 下载西湖大学共享存储平台客户端,支持**目录直接下载**等高级功能。实验数据在本实验 室电脑中保留 2 个月(暂定,根据情况若硬盘允许数据保存时间延长)。

(8) 使用者应保持实验区域的卫生清洁,测试完毕请及时带走样品,本实验室不负责保管样品。

(9) 使用者若违犯以上条例,将酌情给予警告、通报批评、罚款及取消使用资格等 惩罚措施。

5.3. 培训考核制度

校内教师、研究生均可提出预约申请,由技术员安排时间进行培训,培训分为三部分:

第一部分:由实验室负责人或仪器负责人介绍实验室规章制度、安全管理规范、 仪器设备原理、基本硬件知识。

第二部分:上机培训,内容包含:样品送样及制样、仪器标准操作规程(自主测试-初、中、高级 SOP)、相应数据处理。

第三部分:上机培训结束后,培训者需在一周内进行至少两次自主上机预约,在 仪器负责人的监督下进行独立操作。

实验室技术员认为培训者达到相应级别的独立操作水平后,给予培训者授权在相 应级别所允许的可操作实验范围内独立使用仪器。如果在各级别因为人为操作错误导致 仪器故障者,除按要求承担维修费用之外,给予降级重考惩罚、培训费翻倍。

注意:培训中的第一部分和第二部分需要用户在一周内完成(特殊情况除外),否则需要重新进行培训;培训通过后用户需保证每月至少1次的自主上机测试,若超过该时间需要重新联系仪器负责人监督考核,否则将无法预约该仪器设备。

对接受培训人员的核心要求:

(1) 熟悉 PXRD 原理、构造及各部分的功能,严格遵守仪器部件的注意事项,在突然停电时能及时处理仪器并上报,关注仪器各部件有无异常;

(2) 熟练掌握 PXRD 以及数据格式转换系统,严格按照标准操作规程操作,防止因 人为操作不当造成仪器故障,特别是因为样品架放置不到位的而发生卡样品(此种情况 属人为事故,所属课题组须承担维修费用),认真做好 PXRD 的使用及故障记录。

5.4. 仪器故障报告

(1) 仪器使用过程中,仪器出现故障及错误提示信息时:应即时通知技术员;

(2)请在第一时间将故障及错误提示信息截屏,并保存在桌面"Error Report"文件,截屏文件命名请按照"导师名-用户名-样品名-故障时间(具体到分钟)";在《仪器设备使用记录本》的备注栏做简单说明。

5.5. 致谢

使用物质科学公共实验平台的仪器设备、或得到平台技术人员的支持协助,获得相应成果后,应在发表的文章中对平台予以致谢,并及时反馈至平台 Ihpt@westlake.edu.cn 。 建 议 致 谢 方 式 参 见 <u>https://iscps.westlake.edu.cn/info/1129/1462.htm</u>, "The author thanks (Dr. XXX _{内部文件,请勿随意转发、打印、复印} from) Instrumentation and Service Center for Physical Sciences at Westlake University for (the assistance/discussion/supporting in) \cdots measurement/data interpretation."

Hit when a start w

6. 多晶 X 射线衍射仪 Bruker D8 Advance 标准操作步骤

6.1. 介绍

仪器型号: Bruker D8 Advance

产地:德国

基本信息:多晶 XRD 主机(包括光源、光学系统、检测器)及水冷系统

放置地点:西湖大学云栖校区 4 号楼 112 X 射线衍射实验室

6.2. 仪器主要技术参数

多晶 X 射线衍射仪 Bruker D8 Advance (简称 PXRD) 配有 90 位自动进样器,可实现高通量、高效智能化的衍射系统;配备的全自动 DB0 动态光学系统,自动发散狭缝、自动防空气散射刀口、动态探测器窗口相结合,实现可控的仪器背景、快速和定性定量的数据采集;能量分辨的 LynxEye XE-T 探测器自动滤除荧光、降低背景信号,极大提高信噪比。

最大功率 3kW; Cu 固定靶;

扫描模式: θ/2θ, 可测试的20 范围0.5 ~ 120°

全自动 DBO 动态光学系统

90 位自动进样装置

一维阵列式 LynxEye XE-T 探测器,能量分辨优于 380 eV

测角仪精度 0.0001°; 最小步长 0.0001°;

Bruker D8 Advance 多晶 X 射线衍射仪主要组成部分如下,如图 6-1 所示:

图 6-1 多晶 X 射线衍射仪 Bruker D8 Advance 系统图示

6.3. 样品要求

- (1) 不测试含有毒性、腐蚀性样品;
- (2) 粉末样品要求: 粒度均匀, 粒径小于 20 µm, 粉末样品量约需 1g;
- (3) 微粉样品需要颗粒均匀细小(50nm以上), 且物质性质稳定;
- (4) 块状样品要求:测试面清洁平整,可以是板状、片状或丝状,带衬底材料的薄膜或带基材的镀层等,原始形状厚度≤5mm,直径≤2cm;
- (5) 条带样品需要平整光滑且不能太厚,厚度小于 5mm;
- (6) 委托测试请告知测量的角度范围(2θ 扫描范围 0.5°~120°之间)、样品组 成成分及所含的元素种类;
- (7) 易变质样品需提前与技术员联系,预约测试时间。
- (8) 请注明样品保存条件,如常规、冷冻、干燥、冷藏、避光等;

6.4. 样品制备

6.4.1 粉末样品制备

PMMA 样品架(图 6-2)、不锈钢样品架衍射结果见桌面"Holder"文件夹。

图 6-2 粉末样品制备

6.4.2 微量和薄膜样品制备

选用微量样品架。

对于微量粉末,制样如图 6-3 (中)。

对于轻薄的薄膜样品,制样如图 6-3 (右),样品需要用胶带固定,注意胶带需在 样品架之内、零背景硅片之外。

各类零背景样品架衍射结果见桌面"Holder"文件夹。

图 6-3 微量粉末样品和薄膜制备

6.4.3 不规则形状固体样品或带基底样品的制备

采用深槽大样品架,样品底部可用橡皮泥铺垫;注意橡皮泥有衍射峰,只能在样品 正下方,不能暴露给X射线。橡皮泥、常见衬底衍射结果见桌面"Holder"文件夹。

图 6-4 不规则形状固体样品或带基底样品的制备

6.4.4 装样

样品制备后,打开样品仓检查防空气散射刀片是否清洁,若沾有样品,请用沾有酒精的无尘纸清洁。将样品架转移到样品塔上,注意样品架一定要在样品塔上放平(平视此样品架,再次确认样品架放置到位),如图 6-5,否则机械手会卡住;若设置多个样品自动测试,将会中途暂停测试。然后按下按钮将样品塔固定在样品仓里。

注意:可以按开门键开门的前提是:设备上状态指示灯为绿色且机械手处于静止状态。

图 6-5 放置样品塔

- 6.5. 开机
- 6.5.1 打开冷却水循环装置,

此机器设置温度在 26 ± 2 ℃,一般温度不超过 28 ℃,水压稳定在 0.45 MPa 即 可正常工作(图 6-6 所示)。若高于此示数,请报告给技术员。

图 6-6 水冷机温度及水压示意图

6.5.2 开电源

在衍射仪左侧面,将主切断开关(红色旋钮)从"0"旋转到"1"的位置,将绿色 按钮按下,此时机器开始启动和自检;启动完毕后,仪器主机左侧面高压指示灯显示为 白色,仪器状态指示灯为绿色(注意:绿色表示仪器主机与控制电脑间通讯良好;若电 脑未开机,则只显示白色),直至高压发生器按钮屏出现"1";按下高压发生器按钮, 高压发生器指示灯亮,如果是较长时间未开机,仪器将自动进行光管老化,此时按键为 闪烁的蓝色,并且显示 COND。 老化完毕后,高压指示灯显示为¹⁰⁰。仪器启动完毕后 方可进行测量。

图 6-7 XRD 主机电源开关(左)、高压按钮(右上)、仪器状态指示灯(右下) 6.5.3 开启软件

打开 DFFRAC. measurement suit **题**,选择 Lab Manager,无密码,按 Enter 进入软件界面。

6.5.4 初始化马达

在设备第一次开机时,需在 Diffrac. Commander 界面上,勾上①request,然后点击 ②Initialize[●],对所有马达进行初始化(在每次开机时均需要进行初始化,仪器 会自动提醒,未初始化显示为叹号▲,初始化正常后显示为对勾●,马达出错时显示为●)。除了此次开机需要进行初始化,其他情况都不用做初始化。

WIZARD	DETECTO	R COMMAN	IDER START	JOBS JOBLIST	DA	INCI 1	
Instrumen	nt Compone	ents					Ŗ
Load	Position 1	1		Save	F	Rename	
Sample Po	s.		MAN	<u> </u>	5	1	
Drive		Unit	Actual	Edited		2)	×/
Theta		[°]	30.0000	2.4229	-		
Two Theta	а	[°]	60.0000	4.8458		8	
Detector		[°]	30.0000	0.0000	~	8	
Phi		[°]	359.9	0		₩ .	
Variable ro	otation	[/min]	0.0	15.0	•	X	
AirScatter	3		Automatic			X	
Optics_Pri	imary_Moto	orizedSlit	Slitwidth			×	
		[mm]	0.501	0.600	•	X	
X-Ray G	enerator						
Voltage		[kV]	20	40 🌧		B (
Current		[mA]	5	40 🌲	[W] [100.	.0
X-Ray		ON		Set		Off	
Shutter		CLOSE				Open	
Tube	Tube: Cu	tube with 1.	5418 [Â].			l	~
Detector	LYNX	EYE_XE_T (1	D mode)		~	₽ .	
		Y.	N.				

图 6-8 马达初始化

6.6. 衍射仪准直步骤

使用刚玉标准样品,测试从 34.5°到 36.0° 的衍射峰,步长选择 0.01°/step,标准 Ka1 峰位在 35.149°,可以接受的偏差为 ± 0.01°;如果偏差超过可接受范围,请告知 PXRD 技术员需要进行对光处理。

图 6-9 刚玉标样最强峰

6.7. 单个样品模式测量

6.7.1 选择样品位置

如样品放置在 BO2 上,从 Sample Pos. 选取 1BO2,并点击右侧的②Load 🄄,将 样品 Load 到样品台上。

	Instrument Components				0	0	Ţ.				
	Load	Position 1				Save	BR	ename			
	Sample Pos	5.		1	MAN		6	7 🖌	17	h	
	Drive		Unit	Actual	MAN 1801	-		3,45 💜		5	
	Theta		[°]	30.0	1802	^{**} 0.0000	•	V			
	Two Theta		[°]	60.0	1B03 1B04	0.0000		V			
	Detector		[°]	30.0	1805 1806	✓ 0.0000		V			
	Phi		[°]		0	359.9		V			
	Variable ro	tation	[/min]	(0.0	15.0		1			
	AirScatter			Fixed sa	ample dis	tance	~				
			[mm]	0.6	500	0.600	•	X.			
	Optics_Prin	nary_Motorize	edSlit	Slitwidth	n		~				
			[mm]	0.5	599	0.600	•	X			
	X-Ray Ge	enerator									
	Voltage		[kV]		20	40 🤤		è, 🖌			
	Current		[mA]		5	40 😂	[W]	100.0			
	X-Ray	0				Set		Off			
	Shutter	C						Open			
	Tube [Tube: Cu tub	e with 1.	5418 [Â].	4			×			
	Detector	LYNXEYE	_XE_T (1	D mode)				V			
样品测试完毕	¥后,占	÷击 Samp I	图 6	┍−10 L 右仰	oad 样 I的③	品 un load	e	将样 品	旧位到柏	€品楼┣	•
6.7.2 设定相应的	り样品转	速并打上	二对勾	,以软	动样	品来消陵	科	论取向.	/		

Variable rotation	[/min]	0.0	15.0	~

注意:液体、样品密度比较小、样品质量很轻、样品未固定且易滑动,则此值设置为0 不旋转;带静电样品最好不旋转。

图 6-11 设置旋转样品台

6.7.3 防空气散射通常选择 Automatic 模式。

AirScatter	Automatic	\mathbf{r}
	图 6-12	

当样品高出样品槽时,为避免 AirScatter 碰撞样品损伤仪器或切入粉末样品切断 衍射信号,一定要选择 Fixed 模式,抬高 AirScatter,在加载样品之前设置好刀片底部 与样品的距离,如图 6-13。

AirScatter	Fixed sample distance		9 7.
[mm]	2.000 2.000	- 🏹	
图	5-13 Fixed 模式		X I

6.7.4 防散射狭缝选择标准:

2 θ 起始角度从 10°开始测试,则 Slitwidth 设定为 0.6 mm, PSD 设定为 3.3°并 打上对勾;

Optics_Primary_I	MotorizedSlit	Slitwidth		\sim
	[mm]	0.601	0.600 🗸	X
	_			
	PSD opening	[°] 3.2974	55692: 💭	
	Scan Setup	Info		
	图 6-14 SI	itwidth 和	PSD 设置	

若 2 θ 起始角度从 5°开始测试,则 Slitwidth 设定为 0.4 mm, PSD 设定为 2.0°;若 2 θ 起始角度从 1°开始测试,则 Slitwidth 设定为 0.2 mm, PSD 设定为 1°。

6.7.5 观察光管设置: Cu 固定靶, 波长 1.5418Å。

Tube	Tube: Cu tube with 1.5418 [Å].	~
	图 6-15 光源波长	

6.7.6 探测器设置应设置为一维模式:

Detector	LYNXEYE_XE_T (1D mode)	≥ Ы		J
	图 6-16 探测器模式			

6.7.7 设置扫描参数:

①2θ 起始角度(Start)、终止角度(Stop)、步长(Increment)、②曝光时间(Time/Step)、③探测器开口(PSD opening,最大为 3.3°)等参数。则测试运行时间(Total time)为(Stop -Start) / Increment* Time/Step。

Scan Setup												
Scan type	Coup	led 1	woTheta/Theta	6	Scan mode	Contin	uous PSD fast	4	♠	Start	Resume	
Time / Step	[s]		0.100 Steps		1440 Total ti	me [s]		161	570P	Stop	Use Zoom	
Parameter			Start		Increment		Stop		1440			
2Theta		[°]	2.0000	[°]	0.019464148	ê [°]	30.0090		Aut	o repeat		
Theta		[°]	1.0000	[°]	0.0097320	ê [°]	15.0045			Script edito	or Script 🗸 🗸	
PSD opening)	[°]	3.297455692]								
Scan Setup	Inf	0										
	Scan Setup Scan type Time / Step Parameter 2Theta Theta PSD opening Scan Setup	Scan Setup Scan type Coup Time / Step [s] Parameter 2Theta Theta PSD opening Scan Setup Infi	Scan Setup Scan type Coupled T Time / Step [s] Parameter 2Theta 1 [°] PSD opening [°] Scan Setup Info	Scan Setup Scan type Coupled TwoTheta/Theta Time / Step [s] 0.100 Steps Parameter Start 2Theta [°] 2.0000 Theta [°] 1.0000 PSD opening [°] 3.297455692; Scan Setup Info	Scan Setup Scan type Coupled TwoTheta/Theta Time / Step [s] 0.100 Steps Parameter Start 2Theta 1 [°] 2.0000 [°] Theta [°] 1.0000 [°] PSD opening [°] 3.297455692 💭 Scan Setup Info	Scan Setup Scan type Coupled TwoTheta/Theta Time / Step [s] 0.100 Steps 1440 Total ti Parameter Start Increment 2Theta [•] 2.0000 [•] 0.019464148 Theta [•] 1.0000 [•] 0.0097320 PSD opening [•] 3.297455692i 🐑 Scan Setup Info	Scan Setup Scan type Coupled TwoTheta/Theta Time / Step [s] 0.100 Steps 1440 Total time Parameter Start Increment 2Theta [°] 0 1.0000 PSD opening [°] Scan Setup Info	Scan Setup Scan type Coupled TwoTheta/Theta Scan mode Continuous PSD fast Time / Step [s] 0.100 Steps 1440 Total time [s] Parameter Start Increment Stop 2Theta 1 [°] 2.0000 [°] 0.019464148 [°] 30.0090 Theta [°] 1.0000 [°] 0.0097320 [°] 15.0045 PSD opening [°] 3.297455692: [©] Scan Setup Info	Scan Setup Scan type Coupled TwoTheta/Theta Scan mode Continuous PSD fast (4) Time / Step [s] 0.100 Steps 1440 Total time [s] 161 Parameter Start Increment Stop 30.0090 161 ZTheta [°] 2.0000 [°] 0.019464148 [°] 30.0090 Theta [°] 1.0000 [°] 0.0097320 [°] 15.0045 PSD opening [°] 3.297455692 [Scan Setup Info Info	Scan Setup Scan type Coupled TwoTheta/Theta Scan type Coupled TwoTheta/Theta Time / Step [s] 0.100 Start Increment [s] Parameter Start Increment Start Increment Stop Theta [°] 2.0000 [°] 0.0097320 PSD opening [°] 3.297455692 Scan Setup Info Scan Setup Info	Scan Setup Scan type Coupled TwoTheta/Theta Scan type Coupled TwoTheta/Theta Time / Step [s] 0.100 Steps 1440 Total time Parameter Start Increment Stop 1440 1440 2Theta [°] 1.0000 0.0097320 [°] 15.0045 Script editor PSD opening [°] Scan Setup Info	

图 6-17 设置扫描参数

6.7.8 开始测试

所有设置完毕后,再次确认主机门是否关闭,确认后可点击上图中的④Start ● start

6.7.9 保存数据

测试完毕后,点击保存上,保存数据到 D 盘里各课题组的文件夹中。

6.8. 批量样品模式测量

6.8.1 测量方法的建立

点击 WIZARD 标签页,点击左上角 New Wizard,选 XRD 模式,点击 OK。

	IDER START JOBS JOBLIST DA VINCI TOOLS C	ONFIGURATION DB MANAGEMENT RESULTS MANAGER LOG
S DAVINCI	Print report	
DAVINCI		
	Experiment Create a new experim	ent
XRD BASIC	0 HR-XRD	High resolution X-ray diffraction
E 🗹 XRD BASIC	Application type HR-XRD (V4 compatible)) High resolution X-ray diffraction (backward compatible with V4).
DAVINCI	Experiment time Stress (backward co	Texture experiment
🧭 XRD setup	Identifier (3) XRD	Powder X-ray diffraction experiment
····· 🖌 vct/vss	XRD (backward comp	Powder X-ray diffraction experiment (backward compatible). Nee
	Alubath (backward c	Alubath (backward compatible)
	Measurement summ	
	ОК	Cancel
	夜 4_10 实际 Z 卦 颍山	2.平士2.4
	图 0-18 制建侧	瓜 万法
6 8 2 设置硬件。		
0.0.2 以且收什:		
6891 设署 Tuba, 占:	与Tube 输入由压 10 kV	由流 10 mA.
0.0.2.1 反直 1008: 点[Trube, 相八电压 40 KV,	
Primary Beam Path	Radius	Primary Beam Path Radius
Primary Beam Path	Radius 250	Primary Beam Path Radius 250
Primary Beam Path	Radius 250	Primary Beam Path Radius 250
Primary Beam Path	Radius 250	Primary Beam Path Radius 250
Primary Beam Path	Radius 250	Primary Beam Path Radius 250
Primary Beam Path	Radius 250	Primary Beam Path Radius 250
Primary Beam Path 1 TubeMount 1	Radius 250 Tube	Primary Beam Path Radius 250
Primary Beam Path 1 Image: Constraint of the second se	Radius 250 Tube	Primary Beam Path Radius 250
Primary Beam Path 1 Image: Constraint of the second se	Radius 250 Tube	Primary Beam Path Radius 250
Primary Beam Path 1 Image: Constraint of the second se	Radius 250 Tube	Primary Beam Path Radius 250
Primary Beam Path 1 Image: Constraint of the second se	Radius 250 Tube	Primary Beam Path Radius 250
Primary Beam Path 1 Image: Constraint of the second se	Radius 250 Tube	Primary Beam Path Radius 250 TubeMount Tube Tube Tube Voltage [kV] 40 Current [mA] 40 Current [mA]
Primary Beam Path 1 Image: Constraint of the second se	Radius 250 Tube	Primary Beam Path Radius 250
Primary Beam Path 1 Image: Constraint of the second se	Radius 250 Tube	Primary Beam Path Radius 250
Primary Beam Path 1 Image: Constraint of the second se	Radius 250 Tube Slitwidth	Primary Beam Path Radius 250
Primary Beam Path 1 Image: Constraint of the second se	Radius 250 Tube Slitwidth No Slit 10.5 [mm]	Primary Beam Path Radius 250
Primary Beam Path 1 Image: Constraint of the second se	Radius 250 Tube Slitwidth No Slit 10.5 [mm]	Primary Beam Path Radius 250
Primary Beam Path 1 Image: Constraint of the second se	Radius 250 Tube Slitwidth No Slit 10.5 [mm]	Primary Beam Path Radius 250
Primary Beam Path 1 Image: Constraint of the second se	Radius 250 Tube Slitwidth No Slit 10.5 [mm]	Primary Beam Path Radius 250

图 6-19 设置管电压和管电流

6.8.2.2 设置 Optics Primary Mo:点击 Opening degree,此框设置 Slit Size 为 0.6 mm; TubeMount Tube TubeMount Tube 2 🖌 Optics_Primary_Motorize... O Opening 0.28 [°] Optics_Primary_Mo...(1) Slitwidth Set Slit Size 0.600 [mm] 1.0 O Sample Length [mm] 3 🖌 SlitMount No Slit 10.5 [mm] SlitMount No SI 4 🕑 4 🖌 SollerMount Axial Soller 2.5 [°] SollerMount Axial 图 6-20 设置防散射狭缝 6.8.2.3 确认探测器为一维模式: Secondary Beam Path Radius 250 **S** 1 LYNXEYE XE T LYNXEYE XE **Current Value** LYNXEYE_XE_T (1D mode) Properties LYNXEYE_XE_T (1D mode) Low Threshold 0.771 Soll High Threshold 0.821 DetectorOpticsMou... LynxEye profile HighResolution Orientation 0 Deflection 0

图 6-21 探测器模式

Slit_open_1 18 [....

DetectorOpticsMou...

6.8.2.4 设置样品台及防空气散射模式:点击"AirScatter"后,跳出的界面上输入 Rotation 样品旋转速度(如10转/min);AirScatter 通常选择Automatic 模式;

Sample Stage	Sample Stage
1 V AUTOCHANGER AirScatter	AutochangerStage AutochangerStage AirScatter

图 6-22 设置样品台及防空气散射模式

6.8.2.5 点击左侧"Method"下的"XRD setup",会弹出下列窗口,点击 OK 保存"DAVINCI"

硬件设置;

Z DAVINCI	Primary Beam Path
DAVINCI	
XRD BASIC	1 🔊
🖃 🗹 XRD BASIC	Warning 🛛
E Method #1	
1 Z XRD setup	The DAVINCI settings were modified. If you press OK the settings will be applied to all methods.
VCT/VSS	

6.8.2.6设置"XRD setup":①2θ 起始角度(Start)、终止角度(Stop)、步长(Increment)、
②曝光时间(Time/Step)、③探测器开口(PSD opening,最大 3.3°)等参数。则测
试运行时间(Total time)为(Stop -Start) / Increment* Time/Step。

JAVINCI	Scan type	Coupled TwoThe	ta/Theta		(2)	Time / Step	[s]	0.100 🔃 De	elay time	[s]		0.0	^ ::
DAVINCI	Scan mode	Continuous PSD	fast			Steps		2501 4 To	otal time	[s]		267.1	~
						::		_					>
XRD BASIC	Scan para	meters											
- 🖌 XRD BASIC	Scan a	dis	Unit	0	Abs. st	art		Abs. stop		Increm	nent		
🖃 🧭 Method #1	2Theta		[°]	U	5.0000			55.0000		0.019	464148181	J	
🐼 DAVINCI	Theta		[°]		2.5000			27.5000		0.009	732074091		
···· 7 XRD setup	3 PSD op	ening	[°]		3.2974	556928							
····· 😼 VCT/VSS													
							r					_	

副方 6.8.2.6.1 最后在左下角的"Summary"中查看方法建立的准确性后,再保存 法到用户指定的文件夹中。

图 6-25

6.8.2.7 建立批量测量工作:①点击 START JOBS,②编辑样品位置(Sample Position)、 ③测量方法(Experiment Name)及数据保存路径(Result File Name)(将鼠标悬在.bsml 上点击右键,选择 Create result file name:即可产生与方法同路径同文件命的结果 文件; 或④点击"…"设置保存路径); . 7

WIZARD DETECTOR COMMAND	START JOBS JOBI	IST DA VINCI TOOLS CONFIGUR	TION DB MANAGEMENT RESU	JLTS MANAGER LOG		
Valid Sample Position S	Sample ID	Experiment Name	Result File Name	Script Name	Priority	
▶ <mark>√</mark> 2 1802	3	\20210721_20-120_0.1s_0.01	Create result f	eneme(s)		÷:
			Copy Paste			
			Clear row Clear all			
			Save job list as. Load job list			
			Save the select	ed job(s) as job template ed job(s) as scheduled job		
			Column editor Restore column	 n default settings		

图 6-26 在 START JOBS 中设置测试方法

6.8.2.8 若有多个样品,按回车键连续创建多个测试方法,如图 6-27;设置完成后点 击右下方的"Start Jobs";

1	WIZARD	DETECTOR COMMAN	DER START JOBS J	OBLIST DA VINCI TOOLS CONFIGUR	ATION DB MANAGEMENT RESULTS	MANAGER LOG						
	Valid	Sample Position	Sample ID	Experiment Name	Result File Name	Script Name	Priority					
		1802		\20210721_20-120_0.1s_0.01	\1.brml							
		1803		\20210721_20-120_0.1s_0.01	\2.brml			::				
	I 🖌	1B04		\20210721_20-120_0.1s_0.01	\3.brml •••							
	✓ Validate experiments before start Start (3) Jobs											
	Start Job	s Start Job templates										

图 6-27

6.8.2.9 在 "JOBLIST"标签页中查看任务状态,确认第一个样品状态为"Active", 并确认测试结束的时间。还可以右键对任务进行 Stop 和 Restart 操作。

Job ID	Position	Sample ID	Experiment Name	Script Name	Result File Name	Status Mess	Start Time	End Time	Experim
19058	1B02		\20210721_20-120_0.1s_0.01_18min.bsml		\Al2O3_20210923.brml	Active	10:06:53 AM	10:24:20 AM	17m 27s
19059	1803		\20210721_20-120_0.1s_0.01_18min.bsml		\2.brml	Waiting	10:24:20 AM	10:41:47 AM	17m 27s
19060	1B04		\20210721_20-120_0.1s_0.01_18mi		\3.brml	Waiting	10:41:47 AM	10:59:15 AM	17m 27s
			Content of the second						

图 6-28 JOBLIST 标签页

6.9. 数据格式转换

打开 File Exchange 7.3, 在左侧的"Source"栏选择需转换格式的数据文件, 然后在右侧"Target"栏设置转换后数据需要存储的格式及路径, 通常需要转换成 Raw V3 和 UXD 格式, "Targe"路径一般同"Source", 点击右下方的"F9 Convert"。Raw V3 可以用 JADE 打开, UXD、XY、XYE 为文本格式。

FILE EXCHANGE 7.3	💶 🗖 🗖
File Tools Help	
The C:\ The D:\ The E:\ The G:\ The H:\ Z:\ \ DB	C:\
[SOURCE] .dat type None	[TARGET] convert to: Raw V3 V3 Filter: *.* 🕥
Name Ranges Size	Name Raw V2 Size
▲ ← 双击"" 返回上一级又件头	A Raw V3 #
20210501030.brml 616771	20210501030.brml Raw V4 616771
20210502031.brml 614574	\$ 20210502031.brml Raw V5 614574
20210503032.brml 614546	5 20210503032.brml UXD 614546
D:\XRD_Lab\Service\XRD\External\Yanping_Liu\20210506	D:\XRD_Lab\Service\XRD\External\Yanping_Liu\20210506
F2 Rename F3 View F4 Run F5 Copy F6 M	Iove F7 New Dir F8 Delete F9 Convert F10 Merge
Ready	
图 6-29	数据格式转换

7. 常见故障处理

7.1. 点击开始测试后仪器未进行测试,无报错

可能性1:未关好门;

可能性 2: 之前已将位置 "MAN" 加载到仪器上。判断方法:软件界面上和仪器中如 图 7-1 所示。解决方法:点击 UNLOAD。

Instrument Componen	nts				Ŗ
Load Position 1			Save	Renam	e
Sample Pos.		MAN MAN	🔺 🕭 🖉	2 📬	
Drive	Unit	Actual E	dited 🚺 🗆	3,45	*
Theta	[°]	30.0000	30.0000 🗸		
Two Theta	[°]	60.0000	60.0000		
Detector	[°]	30.0000	30.0000		
Phi	[°]	359.9	359.9		
Variable rotation	[/min]	0.0	10.0 🗸	1 🔉	S
AirScatter		Automatic		~	
Optics_Primary_Moto	rizedSlit	Slitwidth		~	
	[mm]	0.399	0.400 🗸	1	

图 7-1 位置 MAN 被加载时仪器和软件的状态

7.2. StartJobs 中无法开始测试

WI	IZARD	DETECTOR	COMMANDER	START JOBS	JOBLIST	DA VINCI	TOOLS	CONFIGURA	TION	DB MANAGEMENT	RESULTS	MAN
	Valid	Sample Po	osition S	Gample ID	Ex	periment Na	me		Resul	t File Name		Scrip
	8	1B02				20210721_2	20-120_0.	1s_0.01	\1.b	rml		
	8	1B03				20210721_2	20-120_0.	1s_0.01	\2.b	rml		
I	8	1B04				20210721_2	20-120_0.	1s_0.01	\3.b	rml	•	

图 7-2 START JOBS 中的 Valid 出错

一般为测试方法与仪器硬件中的索拉狭缝不匹配,START JOBS 中 Valid 一栏为 See .

解决方法:更换仪器中的索拉狭缝或新建一个测试方法;当新建测试方法时,Wizard 自动读取当前硬件配置。

7.3. 强度弱

可能性1:检查电压电流是否设置为40kV/40mA。

可能性 2: 粉末样品过多,衍射信号被样品和自动防散射刀口挡住。

8. 更多资料

8.1. EVA 物相分析及衍射数据处理

见光学显微镜控制电脑。

8.2. X 射线单晶衍射仪 - 光源的选择

https://iscps.westlake.edu.cn/info/1149/1212.htm

8.3. 多晶 X 射线衍射 - 走近探测器

内部文件,请勿随意转发、打印、复印

8.4. 多晶 X 射线衍射的样品制备

https://iscps.westlake.edu.cn/info/1149/1497.htm

8.5. X 射线衍射仪的光学系统及其应用

https://iscps.westlake.edu.cn/info/1149/1661.htm

8.6. 多晶 XRD 数据收集知多少

https://iscps.westlake.edu.cn/info/1149/1867.htm

8.7. Rietveld 结构精修基本介绍

https://iscps.westlake.edu.cn/info/1149/1883.htm

9. 相关/支撑性文件

Q/WU FLHR001 文件编写规范

10. 记录

多晶 X 射线衍射仪 Bruker D8 Advance 使用记录表 V1.0(科研实施与公共仪器中心通用版)

Hitter and a second second

	仪器设备使用记录本													
				测试	测试方式		状态							
日期	测试人	导师(PI)	测试内容	送样 自主 操作		使用前	使用后	(起止时间)	联系电话	备注				
							ふろ							
						2								
						V 7	7							
						X								
				-V										
		Y	XIZ											

请注意:使用前先检查仪器状况,正常方可操作,一旦测试使用,默认为测试前仪器状况为正常,测试后记得取走样品再关机。紧急联系电话:

内部文件,请勿随意转发、打印、复印